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See You See Me: The Role of Eye Contact in Multimodal
Human-Robot Interaction
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We focus on a fundamental looking behavior in human-robot interactions—gazing at each other’s face. Eye
contact and mutual gaze between two social partners are critical in smooth human-human interactions.
Therefore, investigating at what moments and in what ways a robot should look at a human user’s face
as a response to the human’s gaze behavior is an important topic. Toward this goal, we developed a gaze-
contingent human-robot interaction system, which relied on momentary gaze behaviors from a human
user to control an interacting robot in real time. Using this system, we conducted an experiment in which
human participants interacted with the robot in a joint-attention task. In the experiment, we systematically
manipulated the robot’s gaze toward the human partner’s face in real time and then analyzed the human’s
gaze behavior as a response to the robot’s gaze behavior. We found that more face looks from the robot led to
more look-backs (to the robot’s face) from human participants, and consequently, created more mutual gaze
and eye contact between the two. Moreover, participants demonstrated more coordinated and synchronized
multimodal behaviors between speech and gaze when more eye contact was successfully established and
maintained.
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1. INTRODUCTION

In human-human social communication, it is well established that social understanding
is facilitated by paying attention to other people and subtle social cues they generate in
real time [Kendon 1967]. Gaze, or looking, is of central importance in social behaviors
due to the two special roles it plays in maintaining everyday interactions [Kendon and
Cook 1969; Mundy and Newell 2007; Senju and Johnson 2009]. First, eye gaze serves
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as a non-verbal signal [Argyle 1988]. In particular, the act and manner of gazing at
a social partner has meanings as a signal, showing the amount of interest to another
person. Second, gaze is also a channel to perceive the expressions signaled by others.
For instance, to follow the other person’s visual attention, one needs to look at the
person’s eyes and use eye direction to infer where the person is gazing [Frischen et al.
2007]. Taken together, gaze serves as both a signal and a channel: as a signal used by
the gazer to pass communicative information, and as a channel for the social partner
(as a recipient) to receive social information conveyed by the gazer and also to infer the
gazer’s attention.

Due to the importance of eye gaze in human-human communication, gaze behavior
has been widely studied. It has been shown that during face-to-face conversation, two
people look at one another quite often [Argyle and Graham 1976; Freeth et al. 2013].
On average, the speaker tends to look at the listener’s face around 40% of the time,
while the listener looks at the speaker’s face 75% of the time. In addition, mutual gaze,
when partners look at each other’s face, accounts for 30% of those face looks. There is
a dramatic decrease in face looking when there are other targets to look at, especially
when there is an object of legitimate mutual attention. Argyle and Graham [1976] found
that the gaze level in dyads fell from 76.3% when there was nothing much else to look at,
to 6.4% when they were discussing a holiday plan with a relevant map between them.
In addition, gaze, like touch and physical attractiveness, is a powerful reinforcement
to strengthen social influence. For example, teachers who look more at their students
in schools promote more work and learning from their students [Kleinke 1986].

Gaze has also been used as an important social behavior to build intelligent human-
computer interactions, in particular, in human-robot interfaces [Admoni et al. 2014;
Liu et al. 2012; Mutlu et al. 2009; Scassellati 1999; Vertegaal 2003; Yu et al. 2010].
Previous studies have demonstrated effective ways to improve overall user evalua-
tion or performance using gaze cues in human-robot interactions [Hosoda et al. 2004;
Kamashima et al. 2004]. For example, Mutlu et al. [2009] investigated the role of eye
gaze in a story-telling robot and found that participants were better able to recall the
story when the robot looked at them more while it was telling the story. Moreover,
when interacting with a group of participants, the robot’s looking behaviors directly
influenced who would take a turn to speak next in the conversation. Yamazaki and
colleagues [Yamazaki et al. 2008] performed experiments with a guide robot designed
to use data from human experiments to turn its head toward the audience at important
points during its presentation, which made participants demonstrate more non-verbal
actions with precise timing as a response. Yoshikawa et al. [2006] built a robot that
could move its gaze responsively to its interaction partner’s gaze, showing responsive
gaze to the partner’s face could give stronger feelings of being looked at by the robot.
Staudte and Crocker [2011] showed that human gaze was modulated by both robot
speech and gaze, and that human comprehension of robot speech could be improved
when the robot’s language-related gaze behavior was similar to that of humans.

Even with the advances in robotics and sensing techniques, only a few studies have
designed robotic systems that were able to access, process, and react to human par-
ticipants’ gaze behaviors in real time to study how real-time behaviors from a robot
influence human participants’ behaviors [Admoni et al. 2013; Yoshikawa et al. 2006].
Such systems need to implement gaze-contingent platforms in free-flowing human-
robot interaction, and to collect and analyze micro-level behavioral patterns in human
participants [Rich et al. 2010; Xu et al. 2013; Yu et al. 2010]. Toward this goal, the
present article focuses on investigating real-time coupling of face looks in human-robot
interactions and how specific face looks influence participants’ multimodal coordinated
behaviors, with three specific goals: (1) the study aims at providing empirical evidence
on whether human participants naturally respond in real time to momentary gaze
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Fig. 1. An overview of real-time human-robot interaction. Left: a real-time human attention recognition
system based on processing first-person view video and human gaze data. The system detected the attentional
target from a human user moment by moment and passed such information to the robot control system. The
robot then detected the same target from the robot’s view and turned his head directly toward that target.
Right: we recorded and analyzed multimodal data, including video, audio, and eye and head movement data
from both the human and robot sides.

behavior generated by a robot partner in a free-flowing interaction; (2) we examine
what looking behaviors from the robot can successfully elicit responses from human
participants; and (3) we study how different mutual gaze patterns between the human
and the robot may facilitate overall human-robot interaction.

The article is organized as follows. We start with describing a real-time gaze-
contingent robotic platform developed for this study. We then present an experiment
design with three conditions and report results with detailed patterns of human gaze
and speech during human-robot interaction. We conclude with discussions on how to
directly incorporate the findings from the present study into a robot control system
to improve its performance [De Barbaro et al. 2013] and how to take advantage of
guiding principles derived from the present study in future interactive intelligent
system design.

2. REAL-TIME HUMAN-ROBOT INTERACTION

Figure 1 shows the structure of multimodal real-time human-robot interaction in which
a human teacher attempted to teach a robot learner a set of novel object names (ex-
perimental details are described in the next section). In this context, the human man-
ually manipulated the objects to move them to different spatial locations on the table
throughout the entire experiment. In our gaze-contingent multimodal interaction sys-
tem, the robot agent detected the human’s visual attention moment-by-moment in
real time, which allowed us to systematically manipulate the ways in which the robot
reacted to the human’s real-time gaze behavior, such as following the human partic-
ipant’s attentional switches immediately, wherever they were looking. To do so, the
robot needed to look at various locations to follow the target object moment by mo-
ment. In the following, we describe several key components in the real-time system.
A Nao humanoid robot by Aldebaran Robotics was used for the experiment. The Nao
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robot has 35 Degree-Of-Freedoms (DOFs) as a whole. His eye unit is made of a Com-
plementary Metal-Oxide Semiconductor (CMOS) camera with an image resolution of
640×480 at a sample rate of 30 frames per second. The camera’s field of view is 58◦.
The Nao robot used here becomes a popular platform in various applications, such as
RoboCup [Gouaillier et al. 2008], human-robot interaction therapy with autistic chil-
dren [Niemüller et al. 2011; Shamsuddin et al. 2012], and gaze-based human-robot
interaction [Andrist et al. 2014; Csapo et al. 2012; Jokinen and Wilcock 2014; Meena
et al. 2012].

2.1. Visual Processing

As shown in Figure 1 (left), the key idea of the real-time control system is to detect
the human’s attention based on real-time eye tracking, and then to generate gaze-
contingent responsive behaviors in the robot. We used an ASL head-mounted eye
tracker (Applied Science Laboratories, LLC) to detect the human’s gaze direction and
integrated that information with the first-person view images captured from the head-
mounted camera attached to the forehead of the human participant. The human at-
tention detection system processed first-person view video and human gaze data to
detect the attended objects moment by moment at the rate of 30fps (33ms). Since the
interaction environment was covered with white curtains and visual objects were made
with unique colors, detecting objects in the first-person view was done reliably based
on color blobs. There are two steps involved to implement gaze-contingent interaction:
(1) on the human side as shown in Figure 2(a), the system tracks and detects the human
participant’s eye gaze, determines the reliable moment that the participant switches
attention from one target to another (e.g., a switch from the robot’s face to the red
object), and sends the gaze switch command to the robot’s side; (2) on the robot side,
as shown in Figure 2(b), the robot locates the target object in its first-person view and
starts following the target object. In the Appendix, we explain the complete process of
object segmentation and detection on both the participant’s and the robot’s sides, as
well as the detailed information on the reliability test.

2.2. Attention Detection and Robot Control

The eye tracking and object detection system provides real-time data at the frequency
of 30Hz as a sequence of Region-Of-Interest (ROI) derived from human eye gaze. In the
present context, there are four ROIs (the social partner’s face and three objects). The
robot control system needs to send control commands about where to look based on the
human’s looking behaviors. A key challenge here is the stability of the control system
because it is driven by momentary human gaze, which can be sporadic from time to
time. In practice, participants might briefly look at one location for a very short period
of time before quickly shifting to another location. In this case, if the robot starts
executing a motor command to follow the first look, even before the robot fixates on
the target, the human attention may already switch to the next target, and therefore,
the robot would fail to follow the human’s attention at the moment. In addition, the eye
tracking system might sometimes lose track of human eyes, missing data in real-time
control. Therefore, to build a control system that can reliably respond to human gaze,
we designed the system in a way in which the robot determined to switch its attention
only after it detected a stable and sustained look from the human. In implementation,
the system kept track of not only the current gaze data point, but also a buffer of 30
data points in the past second. Only after more than 50% of data points in the buffer
indicated the same target object (either the robot face or one of the objects), the control
system would use this ROI to be the new target for the robot to follow. And if the new
target didn’t match the last detected one, this meant that the participant generated
an attention switch. Only at this moment, a command was sent to the motor system
in the robot’s head to switch gaze and follow the new gaze direction from the human.
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Fig. 2. The complete procedure of object segmentation and detection on both the participant’s side (a) and
the robot’s side (b). More details concerning each step will be explained in the Appendix.

Figure 3 illustrates the detailed mechanism in determining a gaze switch in human
participants. With multiple test runs, we found this mechanism is a good balance
between being responsive and not being hypersensitive to short glances, which makes
the entire interaction smooth and naturalistic.

2.3. Timing in Real-Time Control

After multiple rounds of system testing via pilot experiments, the attention switch
detection mechanism described above added an additional 350ms lag on average. As
explained in the section above, with this mechanism (Figure 3, p1), the robot’s gaze-
following behavior was smoother, and it didn’t get trapped in switching and searching
mode constantly during interaction. To gaze at a target object, the robot’s visual system
was then triggered to find the location of the target from the robot’s camera view. The
object location detection on the robot’s side took about 50ms in real time. In the cases
that the robot decided to turn its head toward the target object location, this motor
command on average took 250ms to be executed. Taken together, the total system lag
in principle was supposed to be about 633ms. We’ve performed a thorough test on the
real-time system and the empirical result obtained was around 657ms. Thus, during an
experiment, the robot system can follow the human’s gaze direction on average within
657ms in our current implementation (close to the theoretical estimate of 633ms).
Based on psychophysics literature, human adults generate three eye fixations per
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Fig. 3. The illustration of detailed timeline (three different phases) for human attention detection and robot
gaze-contingent action control process. Only when more than 50% of data points in the Human ROI Gaze
Stream Buffer indicated the same Region-Of-Interest (in this example, the red object), the control system
would conclude this ROI to be the new attention target and send the control command to the robot to follow
the new target attended by the human participant.

second on average (250–400ms per fixation) [Matin 1974; Volkmann 1986], and it takes
about 300 to 400ms to plan and execute a saccade [Hyönä and Olson 1995; Liversedge
and Findlay 2000; Sereno and Rayner 2003]. The total lag in robot following is, in
general, in line with human real-time gaze behavior.

More generally, in addition to the above timing to execute a following command, there
are a few more decisions needed to be made in the system (which will be explained in
detail in Section 3.1) because the timing information is critical in gaze-contingent
design and needs to be explicit and precise (for example, how long a look from the
human needs to be for the robot to reply, and how long the robot should look at the
human’s face). As the first study at this micro level, we determined timing parameters
in the system based on two general principles. First, we relied on the previous literature
in psychophysics to closely emulate human behaviors as much as possible. Second, we
did multiple test runs to examine what parameters lead to overall smooth interactions
without eliciting abnormal and unexpected behaviors from participants. For example,
response times that are too long or too short would make participants feel strange and
uncomfortable about the robot.

3. EXPERIMENT

3.1. Experiment Design

We designed a word learning task in which a human teacher was instructed to teach
the robot a set of object names in a shared environment. In the experiment, human
participants needed to engage the robot in the task, attract the robot’s attention to the
target object to create joint attention moments, and then label object names for the
robot learning (pseudo-English words were used, e.g., “bosa”). The word learning task
was chosen for two reasons. First, the task was inspired from similar developmental
psychology experiments showing how young children learn to associate visual objects
with novel words through child-parent social interactions [Baldwin 1993; Estes et al.
2007; Yu and Smith 2012]. Second, there is a trend in developmental robotics in which
users teach robots human languages through human-robot interactions [Lyon et al.
2012; Marocco et al. 2010; Tanaka and Matsuzoe 2012; Xu et al. 2013; Yu et al. 2010].

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 1, Article 2, Publication date: May 2016.



See You See Me: The Role of Eye Contact in Multimodal Human-Robot Interaction 2:7

Moreover, this joint task naturally engaged participants to interact with the robot
without any constraint on what they had to do or say. Participants were told to teach
a baby robot the names of novel objects. They actively played the teacher’s role and
freely generated multimodal behaviors to attract the robot’s attention, including eye
contact, pointing to and manipulating objects in the shared environment, as well as
describing and naming the objects in various ways. Like a human learner, the robot
may or may not respond by switching its attention toward an object of interest. Thus,
the interaction itself was free flowing and unscripted, allowing participants to generate
naturalistic behaviors.

There were three experimental conditions, in all of which the robot followed the hu-
man participants’ attention to establish and maintain joint attention on target objects
with the human. That is, by default, the robot spent a large proportion of time on
following the human’s attention. The differences between the three conditions lied in
what triggered the robot to look at the human’s face and how long a face look lasted:

—Responsive: The robot looked at the participant’s face as a response to the partici-
pant’s look at the robot’s face. When the participant looked away from the robot’s face
and moved on to a new target object, the robot also switched its attention to follow
the human’s attention on the same target. Thus, the robot in this condition always
followed the human’s attention either on the face or on one of the three objects. Eye
contact between the dyad was both initialized and terminated by the human.

—Extended responsive: Similar to the above condition, the robot looked back at the
human’s face whenever the human was looking at the robot’s face. Thus, just like in
the responsive condition, the robot’s face looks were still triggered by the human’s
looks. However, the robot in this condition continued looking at the human’s face
for 1.5 seconds even after the participant’s face look to the robot was terminated.
The timing of 1.5 seconds was chosen based on empirical data we gathered from test
runs, as it gave participants enough time to respond to an extended face look if they
wanted to do so. In this condition, eye contact was still initially established by the
human, but the robot’s extended face looks back on the human’s face continued even
after the human’s gaze moved away from the robot, which could make the human
generate a second look back to the robot’s face, and by so doing, create a second eye
contact.

—Responsive and eliciting: In addition to responding to the participant’s face looks,
just like in the above two conditions, the robot in this condition also generated
additional looks toward the human’s face to initialize eye contact at the moment
when the participant was looking at objects for more than 3 seconds, which was a
relatively long time without face looks between the two partners. In this condition,
either the human or the robot could establish eye contact. More specifically, if the
human didn’t do so for 3 seconds, then the robot would initiate one instead.

The first hypothesis to test was whether the participants would be sensitive to the
behavioral-design manipulations among the above three different conditions, and as
a result, behave differently. Specifically, more mutual gaze would be created in the
extended responsive condition and responsive and eliciting condition since the partic-
ipants would notice and react to more frequent and longer face looks from the robot,
and thus, generate more face looks in return. Secondly, we also hypothesized that more
eye contact would make participants more engaged, resulting in a smoother interac-
tion which would be revealed by more naturalistic and coordinated behaviors on the
human side at the micro-behavioral level. Both hypotheses can be tested by collecting
and analyzing the participants’ micro-level behavioral data during experiments and
how their responsive gaze and speech patterns differ across three conditions.
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Fig. 4. Four joint attentional states in the interaction from the participant’s first-person view (human gaze
indicated by a black crosshair): (a) the human was looking at a target object while the robot was looking at
the human’s face; (b) mutual gaze: both the human and the robot looked at each other’s face; (c) both the
robot and the human jointly attended to the same object; and (d) the robot was attending to an object in the
human’s hands while the human gazed at the robot’s face.

3.2. Experiment Procedure

Eighteen students at Indiana University participated in the study (five additional
participants were excluded due to low eye tracking rates). Participants were given
three sets of three novel objects, with each set used in one experimental condition.
More specifically, each set contained one blue, one green, and one pink object. Each
object was given an artificial two-syllable name, i.e., kaki, regli, or gasser. Participants
were asked to teach the robot in three trials with trial orders randomized across
participants. The eye tracker on the human’s head was calibrated before the experiment
started. The participants were then instructed to teach the robot about three objects
in a set for the full duration of 2 minutes for each trial. At the end of each trial, an
experimenter signaled participants to stop and asked participants to take a voluntary
break before starting a new trial with a new set of three objects. Figure 4 shows different
coupled gaze patterns during the experiment from the human’s first-person view. A
demo video from the responsive condition can be accessed via this link (https://www.
youtube.com/watch?v=vGYl7tDe5pM).

4. RESULTS

Our data analyses focused on gaze and speech data from human participants in three
experimental conditions, with respect to the robot’s gaze following and initiating be-
haviors. For gaze data, we recorded where the human and the robot attended, moment-
by-moment. Figure 5 showed three example ROI gaze streams from both the human
and the robot in the three conditions. For speech data, we transcribed speech into text
and, additionally, we categorized spoken utterances into four speech act types: nam-
ing, describing, attention-getting, and confirming. The present study used two types of
speech acts: naming when participants uttered object names in speech and describing
when participants described properties of visual objects. Table I shows the complete
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Fig. 5. Examples of the robot’s and the human’s gaze data streams from three experimental conditions. (a)
Responsive looks: the robot ignored brief face looks from the human and exactly copied human gaze behaviors
with a short delay. (b) Extended responsive looks: the robot responded to the human’s looks by looking back
at the human’s face, and the robot continued looking at the human’s face for another 1.5 seconds even after
the human looked away. Humans may or may not generate a second face look to respond. (c) Responsive and
eliciting looks: the robot not only followed the human’s face looks as it did in the other two conditions, but
it also attempted to initiate eye contact by looking at the human’s face when the human’s attention was not
on the robot’s face.

transcripts from the demo video (with naming instances highlighted in bold and italic
font style). In the following, we will report two sets of results—the first focuses on face
look and mutual gaze (Section 4.1) and the second focuses on multimodal behaviors
between gaze and speech (Section 4.2).

4.1. Gaze Behaviors from Human Participants

This section reports patterns derived from human gaze behaviors and in particular,
how participants adjusted where they looked as a response to the robot’s face looks.
We first report several general statistics from three individual conditions, and then
summarize and compare gaze patterns across the three conditions.

4.1.1. Gaze Behavior in the Responsive Condition. Figure 5(a) shows an example of raw
gaze data from the responsive condition in which the robot exactly followed the human’s
attention moment by moment, either on the human’s face or on the same target object,
creating a sequence of joint-attention moments. A closer examination of gaze data
revealed that the mean duration of the human’s face looks was 1.12 seconds when the
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Table I. An Example Transcript of Human Participant’s Speech

Participant You can trust me on this being a [wawa].
It looks kinda of. . . you could imagine it being some sort of brush
or a scoop (manipulating the object in a brushing-like motion)

Robot (gazing at the pink object and following the target object as it
moved)

Participant You could use it to pick things up.
(putting green object and pink object together)
You could not pick these things up.
(trying to use pink object to scoop up the green object)
They are too heavy.
Ummm, I think we will move back to the [blicket].
(picking up the green object and holding it in the center of his
visual field)

Robot (switching to look at the green object, lifting head up and down
to keep gazing at the green object since the participant was
manipulating the object with his hands)

Participant The [blicket] is green. This is a [blicket].
You can turn the crank but it doesn’t do anything. And you can
movie it. . . like that.
(putting down the green object and picking up the blue object)
And the [mobit] is a gigantic blue blob.

Robot (looking up toward the blue object as the participant held the
object in his hand and in the center of the participant’s
first-person view)

Participant And the [mobit] is a gigantic blue blob.
<video end>

Note: This is from the demo video in the responsive condition (video link: https://www.
youtube.com/watch?v=vGYl7tDe5pM). The object names in speech were highlighted in bold
and italic fonts. It showed that the participant used different sentence structures to describe
the three objects to the robot and actively manipulated the objects during his verbal de-
scriptions, while the robot acted very responsively by following the participant’s attention.

robot followed the human’s face looks, while the gaze duration dropped to 0.31 seconds
when the robot didn’t follow the human’s face gaze. There are two possible reasons
to explain the huge difference. One is that the robot’s responsive face looks made the
human look longer to the robot’s face. The other possibility is that the difference may
have nothing to do with the human’s responsive actions to the robot’s gaze behaviors;
but instead, the human pre-determined how long to look at the robot’s face, and those
longer looks led to responses from the robot, while shorter ones didn’t get responses.
The results from the other two conditions allowed us to determine which explanation
is more plausible.

4.1.2. Gaze Behavior in the Extended Responsive Condition. The results from the extended
responsive condition provided further evidence about the human’s reaction to the
robot’s face looks. As shown in Figure 5(b), the robot in this condition continued looking
at the human’s face for another 1.5 seconds after the human’s gaze moved away from the
robot’s face. Two consequential patterns appeared based on this manipulation. First,
when the robot continued looking at the human’s face even after the human looked
away from its own face (around 47.01% of those instances) the human looked back to
the robot’s face as a response to the robot’s continued face looks (see Figure 5(b)), and
the mean duration of the human’s second face look was 0.76sec, which was significantly
longer than their average duration of face looks in the responsive condition (Mresponsive
= 0.59, t(17) = 5.88, p < 0.001). Second, since the human looked back by taking the
robot’s bid on his attention, in turn, this made the robot keep looking at the human’s
face even more, which formed a feedback loop on mutual gaze until the human decided
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Fig. 6. Different measures of the human participants’ gaze behaviors across three conditions. (a) Propor-
tion of face-looking time across the three experimental conditions. (b) Gaze duration on the robot’s face.
(c) Number of face looks per minute.

to look away and didn’t look back again (see Figure 5(b)). As a result, the mean duration
of overall human face looks was much longer (M = 0.68) than that in the responsive con-
dition (Mresponsive = 0.59; t(17) = 8.67, p < 0.001). In addition, the robot’s face looks were
also significantly longer (M = 3.54) compared with those in the responsive condition
(M = 1.29). Note that the dramatic difference cannot be simply accounted by adding
1.5 seconds (t(17) = 6.47, p < 0.005), suggesting that the robot’s face looks led to the
human’s second face look, which in turn made the robot look more on the human’s face.

4.1.3. Gaze Behavior in the Responsive and Eliciting Condition. In both responsive and ex-
tended responsive conditions, the robot’s gaze at the human’s face was always triggered
by the human’s face looks. As shown in Figure 5(c), the robot in the present condition
elicited the human’s attention by looking at the human’s face first when the human
was looking at one of the objects (thus, not looking at the robot’s face). We found that
29% of the time, when the robot attempted to lead by initiating face looks, participants
took the robot’s bids by switching their attention from a previously attended object
to the robot’s face. In particular, the average timing between the onset of the robot’s
face look and the onset of the human’s responsive face look was 691ms. Given that it
took roughly 300ms to plan and execute a saccade in the human [Frischen et al. 2007;
Posner 1980] (switching eye gaze from one spatial location to another) and there was
also a timing for the human to detect the robot’s face look in the human’s peripheral vi-
sion, we concluded that participants were capable of immediately detecting the robot’s
face looks, and then promptly switching their attention to the robot’s face as a response
if they decided to do so.

4.1.4. Comparison of Gaze Behaviors across Three Experimental Conditions. In this section,
we compare gaze patterns across the three experimental conditions and report both
shared and different gaze patterns across the three. Since the key manipulation of this
gaze-contingent paradigm was the robot’s face-look behavior responding to the human’s
face look, a critical question is how the robot’s behavior may influence the human’s
face looks toward the robot. The potential differences between the three experimental
conditions can be captured by three measures of looking behavior: (1) proportion of time
looking at the robot’s face; (2) looking duration; and (3) frequency of face looks. As shown
in Figure 6(a), there was a statistically significant difference between three conditions
by one-way ANOVA (F(2, 53) = 15.258, p < 0.0001). And post hoc tests revealed that
both longer face looks from the robot in the extended responsive and more initiative
face looks in the responsive and eliciting condition made participants look more toward
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Fig. 7. The proportions of mutual gaze time in which both the robot and the participant looked at each
other’s faces.

the robot than what they did in the responsive condition as a baseline (Prop(responsive) =
17.12 ± 3%, Prop(extended_responsive) = 22.25 ± 4%, p < 0.01; Prop(responsive&eliciting) = 23.56 ±
4%, p < 0.01). Further, we found two different pathways to an overall larger proportion
of face look time shown in Figure 6(a). As shown in Figure 6(b), with strong group
difference (F(2,53) = 13.836, p < 0.0001), participants in the extended responsive
condition (0.68 ± 0.07 sec) generated longer face looks compared with the responsive
condition (0.56 ± 0.07 sec, p < 0.01) and responsive and eliciting condition (0.59 ±
0.07 sec, p < 0.05). Also, from Figure 6(c), participants in the responsive and eliciting
condition produced more face-looks toward the robot (8.15 ± 1.23 looks/min) than
the responsive condition (6.18 ± 1.11 looks/min, p < 0.005). Thus, longer face looks
from the robot led to longer looks from the human, and more looks from the robot
elicited more looks from the human. This can be caused by spontaneous reactions to
the robot’s behavior or by self-conscious social control [Chartrand and Bargh 1999]. In
either case, it is an important demonstration that the robot’s behavior can influence
the human’s responsive behavior in real-time, and in a rhythmic and systematical
way. Also note that in the extended responsive condition, participants generated more
face looks (6.76 ± 1.11 looks/min, p < 0.01) compared with the baseline condition
due to the additional second face looks during the extended time, as described in
Section 4.1.2.

4.1.5. Mutual Gaze as Coupled Behavior. As shown above, various gaze behaviors from
the robot were noticed and responded to by participants, which also changed joint gaze
patterns between the two social partners. Here, we focus on mutual gaze, which has
been demonstrated to be important in face-to-face interaction [Goodwin 1980; Nakano
et al. 2003]. With more face looks between the human and the robot, there was a
dramatic increase of mutual gaze moments with a higher proportion of total time in
the extended condition (14.55 ± 3.7%, p < 0.001) and responsive and eliciting condition
(11.55 ± 6%, p < 0.01), compared with the responsive condition (8.27 ± 5.7%; F(2,
53) = 6.408, p = 0.003), as shown in Figure 7. Mutual gaze as coordinated behavior
had to be created and maintained by joint activities between two social partners. In
the extended responsive condition, the robot generated longer looks, which led people
to generate more looks toward the robot. In the responsive and eliciting condition, the
robot initiated additional face looks that were responded to by participants. In both
cases, reciprocal behaviors from both social partners jointly created more mutual gaze
between the two. In human-human interactions, people (even infants) prefer to look at
faces that engage them in mutual gaze with other social partners [Cohn and Tronick
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Fig. 8. Given multiple temporal instances, the algorithm computes the most probable sequential prototype
based on comparing and matching individual instances.

1987; Fogel 1977]. More mutual gaze can be interpreted as participants cared about the
robot by responding to the robot’s face looks [Boucher et al. 2012; Sidner et al. 2005].
Therefore, the robot’s elicitation of mutual gaze with human users has the potential
to be a powerful reinforcement to strengthen both the robot’s social influence and the
user’s social engagement in the interaction. In light of this, the present results show
that both lengthened face looks and more face looks from the robot can achieve this goal.

So far, our results showed that participants were sensitive to real-time gaze behaviors
generated by the robot, and in particular, they were more likely to respond to the robot’s
bids of eye contact and look back to the robot’s face. Next, we are going to investigate
whether more eye contact made participants more engaged in the teaching task, and
by doing so, they would demonstrate more coordinated behaviors to create a better
teaching environment for the robot learner.

4.2. Coordinated Multimodal Behaviors

In the present task, the goal of participants as a language teacher has been to attract
the robot learner’s attention and then name and describe to-be-learned objects. A typi-
cal speech act that appeared with the highest frequency from speech transcriptions was
a naming event (e.g., “this is a bosa”, “look, bosa”) followed by one or several describing
utterances (e.g., “bosa is red with a round shape”). A sample recording of responsive
condition with the human participant’s speech transcriptions and robot responses was
provided in Table I. In total, participants generated 282 naming-and-describing speech
sequences with approximately the same number of instances in each of three exper-
imental conditions. We considered these moments as critical for teaching in social
interaction, and zoomed into the moments to analyze the coordination between speech
(verbal) and gaze (non-verbal) behaviors by examining where participants looked when
they produced naming and describing utterances.

We used a sequential pattern-mining algorithm that was developed to extract exact
timings and durations of sequential patterns from multiple temporal event streams
[Fricker et al. 2011]. As shown in Figure 8, the first step in this method is to segment
and decompose continuous data streams into multiple local instances, wherein each
instance consists of a set of temporal events from multiple event utterances. The onsets
of these events were used to segment and align individual instances (e.g. red events in
Figure 8). As a result, a set of multiple sequential instances were temporally aligned,
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Fig. 9. Four speech-gaze temporal patterns: object/naming – looking at the target object while naming
it; object/describing – looking at the target object while verbally describing it; face/naming – looking at
the robot-learner’s face while naming an object; and, face/describing – looking at the robot’s face while
describing an object. Note that these patterns contain the information about not only the temporal order of
these multimodal events, but also the timings and durations between and within these events.

each starting with the onset of a naming event and lasting for 5 seconds after. Next,
given multiple sequential instances aligned in time, the algorithm calculates a set of
sequential event prototypes by aggregating and statistically matching these instances.
Each prototype is defined by a set of multimodal events with specific durations and tim-
ings. For example, in Figure 8, 50% of the instances contain a face look (pink) followed
by a naming utterance (red) with a lag time of 500ms, and the remaining 50% contain
the same sequential pattern, but with a lag of 700ms between a face look and the initial
naming utterance. Then, in this case, two prototypes will be derived, with a specific time
lag for each. In addition, the algorithm generates and sorts derived prototypes based on
a frequency score, indicating how many instances from raw data support a particular
prototype. Technical details of this algorithm can be found in Fricker et al. [2011].

As the first steps of analyzing micro-level speech and gaze data collected from the
free-flowing human-robot interaction, we focused on extracting sequential patterns
from four data streams: two speech events (naming and describing, etc.) and two gaze
event types (looking at the robot’s face or looking at the target object, etc.). Thus, we fed
four data streams to the sequential event detection algorithm and Figure 9 shows the
top four statistically reliable sequential prototypes extracted. The top two in Figure 9
are composed of speech and object-gazing events, and the bottom two are composed
of speech and face-gazing events. Within each event type, the difference between two
patterns lies in the timing of looking at the target. For example, the two object-gazing
patterns capture two different kinds of coordination between speech and gaze: partic-
ipants looked at the target at a naming moment in one case versus they did so at the
describing moment in the other case. Similarly, the two face-look patterns shown in the
bottom two plots in Figure 9 were made of two different timings to look at the robot’s
face. In one case, participants looked at the robot’s face while naming the target object;
in the other case, they did so when describing the target object. These speech-gaze
patterns may serve different roles in the interaction and reflect different processes and
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Fig. 10. A comparison of the proportions of instances that participants in three experimental conditions
exhibited the four coordinated sequential patterns. Compared with those in the responsive condition, par-
ticipants in both extended responsive and responsive and eliciting conditions generated more synchronized
gaze-speech patterns toward the target object when naming and describing that object. In all of the three
conditions, they attended to and checked the robot’s face during naming and describing events with no
difference among the three conditions.

internal states in human cognitive systems. For instance, it has been shown that speak-
ers tend to look at the target object when they name that object (pattern object/naming
in Figure 9) and describe it in speech (pattern object/describing in Figure 9) [Griffin
and Bock 2000]. In addition, monitoring and checking the robot learner’s face while
naming or describing the target object (face/naming and face/describing in Figure 9)
also seemed to be a necessary behavioral component in a smooth interaction, as the
teacher needed to make sure the robot learner was actually paying attention the target
object while hearing its name. Indeed, these two speech-and-face-look patterns have
been demonstrated by parents teaching their children to learn object names in which
parents frequently assessed the child’s attention to ensure more joint attention mo-
ments [Mundy and Newell 2007; Yu and Smith 2012]. Hence, we argue that all of the
four speech-gaze patterns revealed naturalistic and coordinated human behaviors and
can be treated as good indicators of smooth interaction. Therefore, the more partici-
pants generated these behavioral patterns and demonstrated multimodal regularities
and synchrony between speech and gaze, the smoother their interaction with the robot
went. Moreover, in the context of language teaching, more multimodal coordination
from the teacher creates better teaching signals that can facilitate learning through
social interactions—a research finding that has already been convincingly shown in
both human learning [Nagai and Rohlfing 2007; Pitsch et al. 2009] and robot learning
[Nagai et al. 2008].

The proportions of instances that matched with each of four sequential patterns
were calculated in three experimental conditions. Note that these four patterns are not
mutually exclusive. For example, participants may look at the robot’s face during both
naming and describing speech acts, which created two different instances—once as
object/naming and once as object/describing. As shown in Figure 10, for two face-look
patterns, there is no significant difference among three conditions (F(2, 53) = 2.51,
p = 0.12), suggesting that in all of the three conditions, participants paid attention
to the robot’s face when producing either naming or describing utterances. However,
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for two object-gazing patterns, participants in “extended responsive” and “responsive
and eliciting” conditions demonstrated more coordinated behaviors compared with
those in the responsive condition. They were more likely to look at the tar-
get object while naming it (Mresponsive = 5.22%; Mextended_responsive = 44.94%, p <
0.001; Mresponsive&eliciting = 38.54%, p < 0.001) or describing it (Mresponsive = 5.56%;
Mextended_responsive = 32.58%, p < 0.001; Mresponsive&eliciting = 38.54%, p < 0.001) in the
two experimental conditions compared with the responsive condition. As mentioned
earlier, looking at the target object while naming or describing it is evidenced in psy-
cholinguistics studies in language production [Griffin and Bock 2000]. In addition,
the synchrony between speech and gaze provides better teaching signals for language
learning [Gogate 2010; Gogate et al. 2000; Rolf et al. 2009]. Putting this together with
the results from the previous sections, we concluded that the robot was able to influence
the human’s gaze behaviors through either increasing the amount of face-look time or
initializing eye contact by itself. As a response to the robot’s face looks, participants
looked back more and created more mutual gaze. Further, more eye contact seemed to
make participants more engaged in the interaction, and therefore, they demonstrated
more coordinated speech-gaze behaviors, which led to both a smoother interaction and
better teaching signals for the robot in the language learning task.

5. GENERAL DISCUSSION

The overall idea that motivated the present work is that a deep understanding of
human-robot interactions requires a level of analysis that concentrates on sensory-
motor behaviors in which the behaviors of social partners continuously adjust to and
influence each other in real time [Marsh et al. 2009]. Since those behaviors happen in
fractions of a second, they have to operate at a sensory-motor level and be supported
by low-level sensory-motor processes. Nonetheless, the same sensory-motor behavioral
exchanges between the human and the robot may shape social interaction in a pro-
found way. The present article focuses on one particular looking behavior—gazing at
each other’s face. Face look and mutual gaze between two social partners are critical in
smooth human-human interactions [Argyle 1988; Clark and Brennan 1991]. The gen-
eral impression formed from looking at a person’s face is that the other is interested
and wishing to initiate interaction. Therefore, investigating at what moments and in
what ways the robot should look at the human’s face in the context of the human’s
spontaneous gaze behavior is an important topic [Tapus et al. 2007].

5.1. Adaptive Behaviors at the Micro Level

With our system design and gaze-contingent platform implementation, the results
showed that the participants were very sensitive and responsive to the robot’s face
looks and they rapidly adjusted their behaviors based on their perception of the robot’s
behavior. For example, in the extended responsive condition, longer face looks from the
robot not only made people look back to the robot’s face but also made their second face
looks longer (0.76 seconds) than their average looking duration (0.59 seconds). Recent
studies in human-human interaction have shown nonconscious responses of postures,
mannerisms, facial expressions, and other behaviors of one’s interaction partners, such
that people may passively and unintentionally change their behaviors to match the
behaviors of others [Chartrand and Bargh 1999]. An interesting question is whether
participants in the present study responded to the robot’s looks intentionally. Alter-
natively, just like mimicry effects, their responses could be unintentional and noncon-
scious. One relevant piece of evidence for this question is derived from response time—
participants’ responsive gaze behaviors were prompt. In the responsive and eliciting
condition, among all the instances that the robot initialized eye contact, more than 29%
of the time, participants responded to look back to the robot’s face within a window of

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 1, Article 2, Publication date: May 2016.



See You See Me: The Role of Eye Contact in Multimodal Human-Robot Interaction 2:17

700ms after the onset of the robot’s initial look. It is unlikely that these fast responses
can be generated by high-level cognitive and social processes, but instead more relied
on sensory-motor processes to take immediate actions. Whether operating on high-
level or low-level processes, participants in the present study seemed to demonstrate
prompt and contingent responses that are similar to what they do in human-human
interactions [Goldstein et al. 2009; Kuhl et al. 2003]. Prompt responses from humans
pose the requirement of real-time adaptive actions from interactive robots that are
expected to interact with humans in a human-like way.

5.2. Engaging Human Participants through Responsive and Contingent Actions

More responsive looks on the robot’s face suggested the human’s interests to the robot
and more eye contact between the two may serve as social reinforcement to influence
and encourage participants to interact more with the robot and treat the robot as a
social partner. As follow-up studies are necessary to further investigate how to take
advantage of human-robot eye contact to facilitate smooth interaction and how to make
eye contact more human-like, the results here are encouraging as they clearly show that
more eye contact between the human and the robot can be accomplished by controlling
the robot to direct its attention to the human face.

In a recent study reported in Freeth et al. [2013], participants were asked to an-
swer questions from an experimenter. Interactions were conducted either live or via
video. In the live condition, participants and an experimenter completed a one-on-
one, face-to-face interaction. In the video condition, an experimenter was videotaped
from a distance and the video was displayed on a monitor. Only in the live interaction
condition, modifications of the experimenter’s eye contact influenced participants’ eye
movements. They looked more at the experimenter’s face when eye contact was made,
but the direction of the experimenter’s gaze had no influence on participants’ view-
ing behavior in the video-based condition. Taken together with our finding that the
changes of gaze direction from a physical robot influence participants’ gaze behaviors,
people are more responsive toward a physical robot compared with another human on
a computer screen. This indicates the potential feasibility of creating human-robot in-
teraction through real-time micro-level behavioral exchanges to approach smoothness
and spontaneity in natural human-human interaction. For example, if a robot learner
intends to re-direct the human’s attention, one effective way is to initialize eye contact
first, wait for the human’s look back, and then at the exact moment when the human
looks back, the robot can direct his attention to the target right after the establishment
of initial eye contact. Based on our findings here, this strategy has a better chance to
redirect the human’s attention to share with the robot’s attention. More generally, eye
contact can serve the function of attention-getting in human-robot interaction, which
is a building block of social interaction and social learning.

We also note that even mutual gaze seems to play a positive role in the present study,
“too much” mutual gaze, wherein two partners just stare at each other’s face may hinder
interaction. In a recent study [Wang and Gratch 2010], the authors found negative
evaluations when an interacting virtual agent was not responsive but just staring at
the participants 100% of the time. Instead, if mutual gaze was accompanied by other
responsive behaviors, such as eye blinking and nodding, participants became more
positive about the interaction. Combined with our results, building smooth human-
robot interaction—whether it is through mutual gaze or other behaviors—needs to
incorporate contingency and responsiveness in real-time coupled behaviors.

5.3. Limitations and Future Work

Our experimental findings can be used to guide the development of a gaze-control sys-
tem in embodied conversational agents. For example, we can cast a general prediction,
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based on our data, when participants may respond to the robot’s face look and look back
to the robot’s face. In this way, our experiments and collected results can provide in-
sights on how a gaze-contingent robotic system creates better engagement to facilitate
coordination in real time by reducing human users’ cognitive loads during face-to-face
interaction. Furthermore, by studying the temporal coupling of eye gaze and speech, we
will be able to design behavioral scripts that will allow artificial agents to assume the
role of a learner that is intuitive and easy to follow for human teachers. Incorporating
those findings into a gaze model and implementing them in robot systems will allow
us to explicitly test the real-time mechanism.

The gaze-contingent system and experimental design in the present study require
us to include multiple temporal variables in the robotic system. Thus, the detailed
reported results, such as gaze duration, were conditional on certain thresholds used
in our system and led to follow-up questions. For example, it took the robot 633ms on
average, empirically, to follow the human’s attention switch; the robot looked at the
human’s face for 1.5 more seconds after the human face look was terminated; and,
the robot initialized a face look if there was no face look in the past 3 seconds. One
consistent observation shared among various findings reported in the present study is
that people are very sensitive to real-time behaviors from the robot. This leads to an
important question—whether different timings programmed in the robot would lead
to different kinds of responses. For example, instead of using 1.5 secs in the extended
condition, would using a 2.5-second threshold completely change people’s responses?
More generally, would some delay or speed-up in the robot’s responses change how peo-
ple respond? As the first steps to understand real-time gaze-contingent behaviors in
human-robot interaction, the results here are informative about the trend and nature
of the human behavior in these particular experimental conditions. However, given
spontaneous responses observed in the present study with our current threshold set-
tings, it is critical to further examine different timing factors and detailed ways in
which they may influence people’s responses.

We also note that the present findings are derived from one joint-attention task
with a specific experimental setup, and therefore, we are interested in further testing
and extending these results with different kinds of collaborative tasks to generalize
and infer fundamental principles in human-robot interaction. In addition, studies on
human-human and human-robot interactions also show individual differences due to
subjective judgements of the current task and previous personal experiences [Fischer
2011]. Along this line, we did not include any survey data in the present study that can
be critically informative of participants’ overall assessment of how well they interacted
with the robot. Such information can be integrated together with micro-level behavioral
data, such as speech and gaze, so that we can link and compare what participants feel
with what momentary multimodal behaviors they generate. Thus, combining and inte-
grating survey data and micro-level behavioral data will provide a unique opportunity
to better understand multimodal human-robot interaction.

APPENDIX

In this appendix, we explain the complete process of object segmentation and detection
on both the participant’s and the robot’s sides. Figure 2(a) shows the steps of object
detection in human participant’s first-person view. By attaching a visual marker on
Nao’s forehead, the module of “Human attention recognition” detects the face of Nao
and the three single-colored objects from human’s first-person view image (320×240
pixels). The basic idea is to compare the four different target ROIs with a 70×0 window
centered at the human gaze point. It consists of three steps:

• Step 1: Sub-images in the ROI window are used to generate silhouettes of the objects
or the robot’s head. We converted the current image frame into an HSV space (Hue,
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Saturation, and Value) and used thresholds in the HSV space to generate binary
images that contain candidates of the silhouettes of the single-colored objects and
the visual patch on Nao’s head. Then, we filtered out noise pixels by a weighted
median filter incorporating both the size and shape of each blob with regard to the
entire frame.

• Step 2: A sub-image in an extended ROI window (140×140) is used to detect the
robot’s head around the human’s eye gaze. The reason to use an extended ROI
window is that the black marker put on the robot’s head can sometimes be out of
the ROI window while the lower-half part of the robot’s head is still within the ROI
window. After the marker is detected, the program generates a rectangle to cover the
robot’s head and neck according to the marker’s position and size.

• Step 3: The third step is to find the largest target ROI among the robot’s head region
and the color objects within the above-mentioned window, which will be identified as
the ROI. For instance, in Figure 2(a), the program would detect that the human is
looking at the green object.

A similar process of color-blob detection and segmentation was done in the robot’s
view (Figure 2(b)) with different thresholds to fit with image properties in Nao’s fore-
head camera. In order to ensure the accuracy of object detection, we randomly gener-
ated about 50 frames per participant and asked human coders to manually label and
segment individual objects and faces, frame-by-frame. The object/face detection accu-
racy is above 98% because of our simplified white room set-up and customized HSV
thresholds for each target.
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